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Recently developed stochastic model of a one-dimensional flow-through chemical reactor is extended
in this paper also to the non-isothermal case. The model enables the evaluation of concentration and
temperature profiles along the reactor. The results are compared with the commonly used one-dimen-
sional dispersion model with Danckwerts’ boundary conditions. The stochastic model also enables to
evaluate a value of the segregation index.
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A stochastic model of a one-dimensional flow-through mixer1 and of an isothermal
chemical reactor2 has been developed recently using an idea of stochastic motion of
molecules of an active (reacting) component transported by means of carrier (inert)
fluid flow. The model was denoted1,2 as a dynamic one as it considers also forces acting
on the moving molecules. The term dynamic model will be therefore used also through-
out this paper. Linear dependence of the forces on the molecule velocity was assumed.
This assumption, together with certain considerations concerning molecule reverbera-
tion at system boundaries, yielded two-parameter model enabling description of all
flow regimes in continuous mixers and chemical reactors commonly considered in
chemical engineering. The model was compared with the one-dimensional dispersion
model with Danckwerts’ boundary conditions3. The dynamic stochastic model was rec-
ognized to be more correct from the theoretical point of view as it does not make use
of ambiguous Danckwerts’ assumption on zero value of concentration derivative at the
reactor outlet. However, the comparison of the component conversion values predicted
by the two models under isothermal conditions revealed negligible differences with
respect to the common engineering accuracy requirements. In this paper, the dynamic
model is extended to the case of non-isothermal reactor.
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THEORETICAL

Let us consider (as in the case of the isothermal reactor model2) the one-dimensional
continuous flow reactor of length L and cross-sectional area S (cf. Fig. 1 in ref.2).
Cross-sectional areas of both inlet and outlet openings are of the same size S0 which can
be either equal to S (a so-called open system) or less than S (a closed system). We shall
further make use of all the assumptions adopted in refs1,2 except of the assumption of
isothermal process. The assumptions imply the velocities of molecules in the system to
be randomly distributed and determined both by the deterministic and stochastic forces1.
The velocity v distribution is expressed by the probability density function fv(v) (cf. Eq. (9)
in ref.1)

fv(v) = 
1

eΓ(b) 



 
e
v
 




b+1

 exp (−e/v)  . (1)

Parameters e and b characterize the deterministic and stochastic forces acting on the
fluid molecules1,2. Another assumption was formulated (cf. Eqs (4) in ref.2) concerning
the probability of molecule escape from the system at the outlet opening

p = 
w

w + v
  , (2)

where parameter w describes geometrical configuration of the system (for an open sys-
tem, w grows to infinity, for an ideal mixer, w approaches zero).

Summing the equations describing the motion and the chemical reaction of the mole-
cules positioned within reactor cross section at distance x measured from the reactor
inlet yields the first-order ordinary differential equation (Eq. (8) in ref.2)

v 
dρA

dx
 = Φ 

[ρA
2  − ρAK

2  (1 − g2)]1/2

ρA
  , (3)

where ρA = ρA(x,v) denotes the concentration of reacting component A at position with
coordinate x and velocity v. Symbol Φ = Φ(ρA,T) denotes the reaction rate which gen-
erally depends on the reacting component concentration and temperature T (in previous
paper2, the temperature dependence was not considered). The quantity g is defined by
the relation following from Eqs (3) and (4) in ref.2

g ≡ g(v) = 
p

2 − p
 = 

w
w + 2v

  . (4)
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Expression (1 – g2) in the numerator of fraction on the right-hand side of Eq. (3)
characterizes circulation of the fluid in the system. In case of an open system, Eq. (3)
transforms to usual relation for a tube reactor with fluid plug-flow. When g < 1, the
value of the reacting component concentration at reactor outlet occurs on the right-hand
side of Eq. (3). Therefore an iterative procedure must be used to solve this equation. In
the isothermal case2, Eq. (3) can be simplified, and the solution may be found in an
integral form. For simpler forms of the reaction rate term Φ, the integration can be
performed analytically with subsequent iterations. In case of non-isothermal process,
this approach is not applicable, and boundary conditions must be formulated in an ex-
plicit way (cf. Eq. (A14) in ref.2)

lim
x→0+

 ρA =  g
2ρA0

2  + (1 − g2)ρAK
2 


1/2

  . (5)

Obviously, the concentration of the reacting component averaged over the reactor cross
section just behind the reactor inlet equals to the inlet concentration ρA0 only in an open
mixer (reactor). The concentration averaged with respect to all possible molecule velo-
cities (cf. Eq. (10) in ref.2) is

ρ
__

A(x) = ∫ 
0

∞

ρA(x,v) fv(v) dv  . (6)

Equations describing the heat transfer in the reactor can be formulated in a way
formally identical to that used in refs1,2. However, less lucid idea of random motion of
energy quanta is to be postulated in comparison with the more simple case of chemical
reaction. This idea was adopted recently4 in stochastic modelling of heat conduction.

Assuming that the density ρ and heat capacity cp of the reaction mixture do not
depend on temperature, the differential enthalpy balance of the reactor can be written in
the form

v 
dT
dx

 = −1
T

 




∆H
ρcp

 Φ + 
kP

ρcpS
 (T − Tm)


 

[T2 − TK

2 (1 − g2)]1/2


  . (7)

Boundary condition for temperature can be written in a similar way as in Eq. (5),
namely

lim
x→0+

 T =  g
2T0 + (1 − g2)TK


1/2

  . (8)
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System of Eqs (3) and (7) along with boundary conditions (5) and (8) has to be
solved by an iterative procedure due to the presence of outlet concentration and tem-
perature values on right-hand sides of these equations. Averaged concentration at posi-
tion x is evaluated according to Eq. (6), and averaged temperature at the same location
is given by the relation

T
__

(x) = ∫ 
0

∞

T(x,v)fv(v) dv  . (9)

RESULTS AND DISCUSSION

Model equations formulated in the previous section enable to evaluate the longitudinal
concentration and temperature profiles in the reactor for given kinetic term Φ. Compu-
tations presented in this paper were performed for the case of the adiabatic reactor (i.e.,
for k = 0 in Eq. (7)) and the results were compared with data obtained from the one-
dimensional dispersion model

Dρ 
d2ρ

__
A

dx2  − v
_
 
dρ

__
A

dx
 + Φ(ρ

__
A,T

__
) = 0  ,

DT 
d2T

__

dx2 − v
_
 
dT

__

dx
 + AΦ(ρ

__
A,T

__
) = 0  , (10)

where v
_
 is the mean fluid velocity in the reactor, Dρ and DT are the dispersion coefficients

for mass and temperature, and A = ∆H/(ρcp). Danckwerts’ boundary conditions were used

v
_
ρA0 = lim

x→0+
 



v
_
 ρ
__

A − Dρ 
dρ
__

A

dx




  ,

lim
x→L−

 
dρ

__
A

dx
 = 0  ,

v
_
T0 = lim

x→0+
 



v
_
T
__
 − DT 

dT
__

dx



  ,

lim
x→L−

 
dT

__

dx
 = 0  . (11)
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Identical values of dispersion coefficients Dρ and DT were considered in computations,
i.e., molecular diffusion and heat conduction were neglected with respect to the convec-
tive transport. In following we put Dρ = DT = D.

Hydrolysis of acetanhydride was used as a model chemical reaction:

(CH3CO)2O + H2O = 2 CH3COOH (12)

which can be supposed to be an irreversible first-order reaction. The temperature de-
pendence of the reaction rate was approximated by the Arrhenius equation

Φ(ρA,T) = ρAk∞ exp (−E/RT)  . (13)

The following set of model parameter values was used5: k∞ = 39.67 . 104 s–1, E = 46.7 . 103

J mol–1, cp = 3 800 J kg–1 K–1, ρ = 1 050 kg m–3, ∆H = –2.13 . 104 J kg–1, ρA0 = 22.03
kg m–3, T0 = 288 K. Mean residence time of the liquid in the reactor was 750 s. Dimen-
sionless longitudinal coordinate x* and dimensionless liquid velocity v* were introduced
(cf. Eqs (14) in ref.2)

x∗ = x/L  ,

v∗ = b(1 + 2Ω)v
e
  . (14)

Earlier introduced1 quantities b and Ω are model parameters also in the non-isothermal
case. Parameter Ω quantifies intensity of liquid circulation within the reactor. Recipro-
cal value of parameter b can be interpreted as a measure of randomness of liquid mole-
cule velocities. The only single dimensionless variable – Peclet number Pe = v

_
L/D – is

parameter of the dispersion model. Recently derived relation2 Ω = 0.368/Pe at constant
value of parameter b = 8.99 was used for comparison of both the models.

Conversion of the reacting component is defined by the relation

Y(x∗) = 1 − 
ρ
__

A(x∗L)
ρA0

  , (15)

and dimensionless temperature of the reaction mixture by the relation

Θ(x∗) = 
T
__

(x∗L)
T0

 − 1  . (16)

246 Kudrna, Vejmola, Hasal:

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



The set of differential equations (3) and (7) together with corresponding boundary
conditions was solved numerically: Adams–Bashforth method6 was used with spatial
integration step size 0.001L. The Newton method was applied to the iterative evalu-
ation of the outlet conversion and temperature. Integrals in Eqs (6) and (9) were, in
general case, evaluated numerically using 2 000 equidistant values of velocity v. The
probability density function, fv(v), approaches Dirac’s δ-function for b = 8.99 (i.e., the
value used for comparison of the proposed model to the dispersion model). Therefore,
just a single value of the dimensionless velocity – the mean value – was used for the
evaluation of conversion and dimensionless temperature. It can be proved easily (using
Eq. (16) in ref.2) that in this case the following relation holds for the mean value of the
dimensionless velocity

v
_

∗ = lim
b→∞

 
(2Ω + 1)b

b − 1
 = 2Ω + 1  . (17)

Results of computations are depicted in Figs 1–4. Figures 1a, 2a, and 3a show spa-
tial profiles of reacting component A conversion, Figs 1b, 2b, and 3b show profiles of
dimensionless temperature. Figures 2 and 3 are plotted with high resolution to enhance
differences between the models. Figure 2 shows also the conversion and temperature
data obtained with the continuous stirred tank reactor (CSTR) model. Figure 3 shows
also conversion and temperature profiles in the plug-flow reactor (PFR) model. First

FIG. 1
Conversion (a) and dimensionless temperature (b) profiles in reactor. General flow regime (Pe = 1):
−−−−− Disperison model with Danckwerts’ boundary conditions (DM), −− −−  −− stochastic model
(SM)
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spatial derivatives of the conversion and dimensionless temperature are plotted in Fig. 4 as
functions of the reactor longitudinal coordinate and both models discussed in this paper
are compared with the PFR model.

Figure 5 also shows results for the case close to macromixing regime. Full circles
indicate the outlet conversion and dimensionless reaction temperature for the macro-

FIG. 3
Conversion (a) and dimensionless temperature (b) profiles in reactor. Flow regime close to plug flow
(Pe = 50): −−−−− Dispersion model with Danckwerts’ boundary conditions (DM), −−  −− −−  stochas-
tic model (SM), − − − − plug-flow reactor (PFR)
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FIG. 2
Conversion (a) and dimensionless temperature (b) profiles in reactor. Flow regime close to ideal
mixing with microflow (Pe = 0.01): −−−−− Dispersion model with Danckwerts’ boundary conditions
(DM), −−  −− −− stochastic model (SM), − − − −  ideal mixer with microflow (CSTR)
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mixing regime obtained by a common procedure, i.e., by evaluating the time course of
conversion and temperature in a batch reactor with subsequent averaging according to
the exponential residence time distribution function

ρ
__

A = 
1
t
_ ∫ 

0

∞

ρA(t) exp (−t/t
_
)  .     [Y = 1 − 

ρ
__

A

ρA0
] (18)

Analogous equation holds for dimensionless reaction temperature.
Simulations with the adiabatic reactor model confirmed the earlier made conclusions

for an isothermal reactor2. First of all, it is the conclusion that the differences between
the compared models are negligible from the point of view of the usual engineering
accuracy requirements. It is well documented in Fig. 5 in ref.2 where the outlet conver-
sion value is plotted against the Peclet number. This conclusion is valid not only for the
outlet conversion values, but also for the global conversion and temperature profiles
within the reactor as documented in Fig. 1 in this paper. For both low and large values
of the Peclet number (Pe ≤ 0.1 or Pe ≥ 10), the differences between the models are
even smaller. Despite this fact, the conclusion (cf. ref.2) stating that the proposed dy-
namic model is much more correct in the sense, that it yields the conversion and tem-
perature values which are in excellent agreement with the results of basic models
(plug-flow model and ideal mixer with liquid micromixing), remains valid. This con-
clusion is confirmed in Figs 2 and 3 which are plotted with high resolution. The cor-
rectness of the dynamic model is also documented in Fig. 4 where profiles of the first
derivatives of the conversion and temperature are plotted. The profiles from the dy-

FIG. 4
Spatial profile of derivative of conversion (a) and of dimensionless temperature (b). Flow regime
close to plug flow (Pe = 50): − − − − Dispersion model with Danckwerts’ boundary conditions (DM),
−−  −−  −− stochastic model (SM), −−−−− plug-flow reactor (PFR)
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namic model are close to those generated by the plug-flow model; the profiles from the
dispersion model, however, decline substantially at the outlet of the reactor as the con-
troversary Danckwerts’ boundary condition must be fulfilled. This remarkable declina-
tion of the conversion and temperature derivatives at the outlet does not influence
markedly the conversion and temperature profiles within the reactor itself.

Range of applicability of Danckwerts’ boundary condition is analogous to the appli-
cability of the condition of an absorbing boundary used in theory of stochastic pro-
cesses and analyzed, e.g., by Zeldovich and Myshkis7 who stated that the zero
concentration value usually supposed at the absorbing boundary (see, e.g. ref.8) cannot
be correct at zero drift velocity (in our case, at zero mean velocity of the liquid in the
reactor): If the velocity at the boundary was zero, no particles can be absorbed there.
The authors concluded that the application of this boundary yields correct results in the
whole system except of a close vicinity of the absorbing boundary. This fact must be
kept in mind. Figure 4 documents that the stochastic model proposed here eliminates
this problem.

We have already concluded1,2 that the dynamic stochastic model enables, unlike the
dispersion model, the description of flow pattern in the regime of fluid macroflow. This
case is documented in Fig. 5 for parameter values Ω = 0 and b = 1.01. The values of
the outlet conversion and dimensionless temperature for the dynamic model almost do
not differ from the values obtained by conventional procedure according to Eq. (18)
(full circles in Fig. 5).

Flow regimes between complete microflow and macromixing are qualitatively
characterized by segregation index J introduced by Danckwerts9 and Zwietering10 by
the relation

J = 
Var(αp)
Var(α)   , (19)
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FIG. 5
Conversion and dimensionless temperature
profiles in reactor. Flow regime close to ideal
mixing with macroflow (Ω = 0.0, b = 1.01):
−−−−− Conversion Y, −−  −−  −− dimensionless tem-
perature θ
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i.e., as the ratio of particle age variance between points10 to particle age variance for the
whole system. The dynamic model enables the evaluation of the segregation index as a
function of model parameters (see Appendix). Since the values of both parameter Ω
and parameter b may grow to infinity, the modified parameters (taking finite values
only) were defined

a ≡ 
1
b
  ,

z ≡ 
2Ω

2Ω + 1
  . (20)

The segregation index as a function of these parameters is depicted in Fig. 6. The value
of segregation index is influenced mainly by the value of parameter z characterizing
intensity of liquid circulation in the reactor. In agreement with expectations (cf., e.g.,
Rippin11) the value of segregation index decreases with increasing circulation intensity.
The randomness of liquid molecule velocities (increases with increasing value of para-
meter a) has substantially less effect on the segregation index value; a more pro-
nounced effect is detectable at medium circulation intensity. At boundary values of
parameter z, the parameter a has negligible effects. This observation agrees well with
the known fact9,10 that the segregation index value cannot differentiate among flow
regimes close to the plug-flow and the macroflow with the exponential residence time
distribution. Therefore, the only single parameter (e.g., considered segregation index) is
not sufficient for distinguishing among flow regimes. The two-parameter model pro-
posed in this paper enables such a differentiation as the above-mentioned distinct flow
regimes are characterized by distinct pairs of parameters b and Ω values.
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FIG. 6
Segregation index J as function of
modified intensity of circulation z and
parameter a (cf. Eq. (20))
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CONCLUSIONS

Theoretical considerations and numerical simulations presented in this paper can be
summarized into the following conclusions:

The earlier proposed stochastic model of continuous flow mixer and chemical reactor
was extended to the non-isothermal case. Analysis of the model confirmed that also in
this case the model is capable of describing the whole range of liquid flow regimes
usually considered in chemical engineering. At limiting values of parameters, the pre-
dictions of the stochastic model practically do not differ from the predictions of basic
models used in chemical engineering, i.e., the model of plug-flow and the model of an
ideal continuous flow mixer both fluid micro- and macromixing.

It was shown that results of the dynamic model of an adiabatic reactor do not nearly
differ from results of the dispersion model with Danckwerts’ boundary conditions. The
applicability of Danckwerts’ condition at reactor outlet was discussed and the proposed
stochastic model was proved to be more correct with respect to the boundary condition
formulation. The proposed model also enables the evaluation of the segregation index
of liquid within reactor.

APPENDIX

Relation of Segregation Index to Parameters of Stochastic Model

Segregation index J is defined by Eq. (19) as the ratio of particle age variance between
points9,10 and in the whole flow system. Denominator of this fraction

Var(α) = 〈α2〉 − 〈α〉2 (A1)

can easily be evaluated as the difference of the second moment of particle age proba-
bility density function I(α) for whole system and square of the first moment

〈αi〉 = ∫ 
0

∞

αiI(α) dα  . (A2)

Zwietering10 derived the simple relation between function I(α) and probability density
function ft(t) of residence time in the system

I(α) = 
1
〈t〉 ∫ 

α

∞

ft(t) dt  , (A3)
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where 〈t〉 is the mean residence time of particles in system.
We shall demonstrate that for the one-dimensional model with random distribution of

particle velocities proposed in this paper, both the numerator and the denominator of
the fraction in Eq. (19) can be evaluated after a minor alteration of the quantity αp

definition compared with original Danckwerts’ definition9: we shall consider αp to be
particle age at given position x and at given velocity v.

First, we shall write a relation for the probability density function of residence time
ft(t) for the presented model (cf. Eqs (23) and (14) in ref.1):

ft(t) = − ∂
∂t

 ∫ 
0

L

∫ 
0

∞

fv(v)fc(x|v;t) dv dx  , (A4)

where the integrated function is a product of solutions of differential equations (8) and
(10) in ref.1 with boundary conditions given by Eq. (17) in the same reference. After
inserting into Eq. (A3) we obtain the relation

I(α) = ∫ 
0

L

∫ 
0

∞




1
〈t〉fv(v)fc(x|v;α)


 dv dx (A5)

assuming that for increasing values of age α, function fc() converges to zero. For the
sake of brevity we shall denote

fα(r,α) ≡ 
1
〈t〉fv(v)fc(x|v;α)  . (A6)

Further we shall formally denote, with symbol r ≡ (x,v), a vector of the one-dimen-
sional position and velocity in configuration space of these quantities. Simplification of
notation of double integral is further introduced as

∫ 
0

L

∫ 
0

∞

dv dx ≡ ∫ 
(∆)

dr  . (A7)

Function fa(r,α) is a simultaneous probability density for particle age α, particle posi-
tion x, and particle velocity v. Integration of this function with respect to particle age α
yields the marginal probability density function for particle velocity and position which
characterizes flow in the system

Ψ(r) = ∫ 
0

∞

fa(r,α) dα  . (A8)
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Further we define the conditional probability density function for age of particle being
at position x and moving with velocity v, i.e., particle being at point r of the configura-
tion space

far(α|r) = 
fa(r,α)
Ψ(r)   . (A9)

Function far(α|r) enables to find the relation for particle age at location x and velocity v

αp(r) = ∫ 
0

∞

αfar(α|r) dα (A10)

and further all i-th moments of the age over the whole configuration space

〈αp〉i = ∫ 
(∆)

αp
i (r)Ψ(r) dr  . (A11)

From comparison of Eq. (A2) with Eq. (A10), considering also Eq. (A6), it is obvious
that the above-defined first moments of particle age at points and in the whole system
are identical unlike the second moments. We shall use Eqs (A2) and (A11) for evalua-
ting the segregation index. Similarly as in the preceding paper1, we shall use the La-
place transformation of pertinent functions f(), and their Laplace transforms will be
denoted by symbols g(), i.e., g(s) = L̂[f(α)], where L̂ is the Laplace transformation
operator. The moments of pertaining functions can then be easily evaluated using the
well-known relation (see, e.g., Appendix in ref.12)

〈αi〉 = (−1)i 
dig(s)

dsi |s=0 ≡ (−1)ig(i)(0)  . (A12)

Required moments are given by the equations

〈α〉 = 〈αp〉 = −∫ 
(∆)

ga
(1)(r,0) dr  , (A13)

〈α2〉 = ∫ 
(∆)

ga
(2)(r,0) dr  , (A14)

〈αp
2〉 = ∫ 

(∆)

[gar
(1)(r,0)]2 Ψ(r)dr = ∫ 

(∆)

1
Ψ(r) [ga

(1)(r,0)]2 dr  . (A15)
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Laplace transform of Eq. (A10) and of its first derivative (A13) was used in Eq. (A15).
Laplace transform of Eq. (A6) can then be written as

ga(r,s) = 
1
〈t〉 fv(v)gc(x,v,s)  , (A16)

where function fv(v) is defined by Eq. (1) in this paper and function gc() by relation (A2)
in ref.1

gc(x,v,s) = 
1
v




exp (−sx/v) + 

2 cosh (sx/v)Q
1 − Q




  , (A17)

where Q = v/[(v + w) exp (–2sL/v)]. Mean residence time according to the proposed
model is (see Eqs (30, (29) and (15) in ref.1)

〈t〉 = L 



b
e
 + 2w




  . (A18)

After performing the operations in integrals of Eqs (A13)–(A15) and subsequent inte-
gration within limits [0,L], the relations for required moments result:

〈α〉 = 〈αp〉 = 
1
〈t〉 ∫ 

0

∞

fv(v)(L/v)2(1
2
 + h2 − 1) dv (A19)

〈α2〉 = 
1
〈t〉 ∫ 

0

∞

fv(v)(L/v)3 



h
3
 + 2h(h2 − 1)


 dv (A20)

〈αp
2〉 = 

1
〈t〉 ∫ 

0

∞

fv(v)(L/v)3


1
3h

 + h(h2 − 1)

 dv  , (A21)

where h ≡ 2v/w + 1.
Integrations with respect to velocity v in foregoing equations are somewhat difficult

as Euler gamma-functions (both complete and incomplete ones, see, e.g., ref.13). After
pertinent rearrangements and with use of the dimensionless parameters b and Ω (cf. Eq. (14)),
the segregation index can be evaluated. Parameters b and Ω were transformed accord-
ing to Eq. (20). Required moments in dimensionless form are

〈α〉
〈t〉  = 

1
2

(2z20 + 4z11 + z02a1) (A22)
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〈α2〉
〈t〉2  = 

1
3

(6z30 + 18z21 + 13z12a1 + z03a1a2) (A23)

〈αp
2〉

〈t〉2  = 
1
3
[z30(2 + I) + 10z21 + 5z12a1 + z03a1a2]  , (A24)

where

I ≡ c1/a exp (c)Γ(1 − 1/a;c)

c ≡ 
z

a(1 − z)

zij ≡ zi(1 − z)j

ai ≡ a + i (A25)

and Γ(x;y) denotes the incomplete gamma-function. By inserting Eqs (A22)–(A25) into
Eq. (A1) and then into Eq. (19), the required segregation index value is obtained. The
values of segregation index for limiting values of parameters a and z can be found after
applying l’Hospital’s rule

lim
z→0

 I = lim
z→1

 I = lim
a→0

 I = z;    lim
a→1

 I = c exp (c) Ei(c)  , (A26)

where Ei(x) is the integral exponential function13 and after inserting into Eq. (19), the
limit values of segregation index are obtained

lim
z→0

 J = 1;    lim
z→1

 J = 0  . (A27)

SYMBOLS

a modified model parameter defined by Eq. (20)
b dimensionless model parameter
cp specific heat capacity, J kg–1 K–1

D dispersion coefficient, m2 s–1

E activation energy, J mol–1

e parameter in Eq. (1), m s–1

fv probability density function for particle velocity, s m–1
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g parameter defined by Eq. (4)
∆H reaction enthalpy, J kg–1

J segregation index
k heat transfer coefficient, W m–2 K–1

k∞ frequency factor, s–1

L length of reactor, m
P reactor perimeter, m
Pe = v

_
L/D Peclet number

p probability of particle escape
R universal gas constant, J mol–1 K–1

S cross-sectional area of reactor, m2

T temperature, K
Tm temperature of environment, K
t time, s
v particle (molecule) velocity, m s–1

v* dimensionless velocity defined by Eq. (14)
w constant characterizing geometry of system, m s–1

x longitudinal coordinate, m
x* dimensionless coordinate defined by Eq. (14)
Y conversion of component A defined by Eq. (15)
z modified model parameter defined by Eq. (20)
α particle age in system, s
αp particle age at point, s
Θ dimensionless temperature defined by Eq. (16)
ρA concentration of reacting component, kg m–3

ρ density, kg m–3

Φ reaction rate, kg m–3 s–1

Γ gamma-function
Ω liquid circulation intensity (model parameter)

Other symbols
uK related to outlet value of quantity u
u0 related to inlet value of quantity u
u
_

mean value of quantity u
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