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Recently developed stochastic model of a one-dimensional flow-through chemical reactor is ex
in this paper also to the non-isothermal case. The model enables the evaluation of concentrat
temperature profiles along the reactor. The results are compared with the commonly used one
sional dispersion model with Danckwerts’ boundary conditions. The stochastic model also ena
evaluate a value of the segregation index.
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A stochastic model of a one-dimensional flow-through niixerd of an isothermal
chemical reactdrhas been developed recently using an idea of stochastic motic
molecules of an active (reacting) component transported by means of carrier {
fluid flow. The model was denotédas a dynamic one as it considers also forces ac
on the moving molecules. The term dynamic model will be therefore used also thr
out this paper. Linear dependence of the forces on the molecule velocity was as:
This assumption, together with certain considerations concerning molecule reve
tion at system boundaries, yielded two-parameter model enabling description

flow regimes in continuous mixers and chemical reactors commonly consider
chemical engineering. The model was compared with the one-dimensional disp
model with Danckwerts’ boundary conditidn@he dynamic stochastic model was re
ognized to be more correct from the theoretical point of view as it does not mak
of ambiguous Danckwerts’ assumption on zero value of concentration derivative

reactor outlet. However, the comparison of the component conversion values pre
by the two models under isothermal conditions revealed negligible differences
respect to the common engineering accuracy requirements. In this paper, the dy
model is extended to the case of non-isothermal reactor.
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Application of Stochastic Diffusion Processes 243

THEORETICAL

Let us consider (as in the case of the isothermal reactor fhdkelone-dimensional
continuous flow reactor of length and cross-sectional areh(cf. Fig. 1 in ref).
Cross-sectional areas of both inlet and outlet openings are of the sar§gndizeh can
be either equal t8 (a so-called open system) or less tlsga closed system). We sha
further make use of all the assumptions adopted irt-#efscept of the assumption o
isothermal process. The assumptions imply the velocities of molecules in the sys
be randomly distributed and determined both by the deterministic and stochasti& fc
The velocityv distribution is expressed by the probability density fundtjo (cf. Eq. ©)
in refl)

W= i O Er exp(-eh) . @

Parameter® andb characterize the deterministic and stochastic forces acting ot
fluid molecule$?. Another assumption was formulated (cf. E4jsig ref?) concerning
the probability of molecule escape from the system at the outlet opening

W

P= sy’ @

where parametex describes geometrical configuration of the system (for an open
tem,w grows to infinity, for an ideal mixewy approaches zero).

Summing the equations describing the motion and the chemical reaction of the
cules positioned within reactor cross section at distamoeasured from the reacto
inlet yields the first-order ordinary differential equation (EB).if ref?)

9P _ g [PR = PR (L- 1 o
dx Pa

wherep, = pa(X,v) denotes the concentration of reacting component A at position

coordinatex and velocityv. Symbol® = ®(p,,T) denotes the reaction rate which ge
erally depends on the reacting component concentration and temp@rétupgevious

papef, the temperature dependence was not considered). The qupistitiefined by

the relation following from Eqs3f and @) in ref2

g=gW) == @
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Expression (1 -g% in the numerator of fraction on the right-hand side of BY.
characterizes circulation of the fluid in the system. In case of an open systerfl) E
transforms to usual relation for a tube reactor with fluid plug-flow. Wihen1, the
value of the reacting component concentration at reactor outlet occurs on the righ
side of Eq. 8). Therefore an iterative procedure must be used to solve this equatic
the isothermal caseEq. @) can be simplified, and the solution may be found in
integral form. For simpler forms of the reaction rate t&bmthe integration can be
performed analytically with subsequent iterations. In case of non-isothermal prc
this approach is not applicable, and boundary conditions must be formulated in :
plicit way (cf. Eq. A14) in ref?)

lim p, = ngA0+(1 gz)pAKH ®)

X— 0+

Obviously, the concentration of the reacting component averaged over the reacto
section just behind the reactor inlet equals to the inlet concentmgjiamly in an open
mixer (reactor). The concentration averaged with respect to all possible molecule
cities (cf. Eq. 10) in ref?) is

00

PA() = PALY) (V) dv . ©)
0

Equations describing the heat transfer in the reactor can be formulated in ¢
formally identical to that used in réf$ However, less lucid idea of random motion
energy quanta is to be postulated in comparison with the more simple case of ch
reaction. This idea was adopted recetitlystochastic modelling of heat conduction.

Assuming that the density and heat capacitg, of the reaction mixture do no
depend on temperature, the differential enthalpy balance of the reactor can be wri
the form

vel= 1, KP (7o Tm)ugTz T2 - PV . ™

dx T% pcS

p

Boundary condition for temperature can be written in a similar way as in5Eq.
namely

lim T = 2TO+(1—gZ)TKBU2 . ®)

X -0+
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System of Eqs3) and {) along with boundary condition)(and ) has to be
solved by an iterative procedure due to the presence of outlet concentration an
perature values on right-hand sides of these equations. Averaged concentration :
tion x is evaluated according to Ed)(and averaged temperature at the same loca
is given by the relation

00

T = [ TxWiV) dv ©)
0

RESULTS AND DISCUSSION

Model equations formulated in the previous section enable to evaluate the longit
concentration and temperature profiles in the reactor for given kineticdte@ompu-

tations presented in this paper were performed for the case of the adiabatic react
for k = 0 in Eq. ¥)) and the results were compared with data obtained from the
dimensional dispersion model

P _dpa =
Do dx? “Vax + (PN =0,
#T _dT =
DT@—V&'FACD@A,T):O , Lo

wherev is the mean fluid velocity in the react@r, andD+ are the dispersion coefficient
for mass and temperature, ahé AH/(pc,). Danckwerts’ boundary conditions were use

VPao = lim %VL_ D @D
Pap x-0+[] Pa e dx D’
dpa
lim———=0 ,
X- L= dx
VT, = lim {7 - D; 911,
x-0+[] dxp
T
lim—=0 . 11
qu—dX ( )
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Identical values of dispersion coefficieriyg andD were considered in computation:
i.e., molecular diffusion and heat conduction were neglected with respect to the cc
tive transport. In following we pud, = D+ =D.

Hydrolysis of acetanhydride was used as a model chemical reaction:

(CH,C0),0 + H,0 = 2 CH,COOH a2

which can be supposed to be an irreversible first-order reaction. The temperatt
pendence of the reaction rate was approximated by the Arrhenius equation

®(pa,T) = paks EXP(-E/RT) . 13

The following set of model parameter values wastusgd= 39.67 . 16s™, E=46.7 . 16
J mot?, c,=3800J kgt K™, p =1 050 kg m3, AH = -2.13 . 16J kg, pag = 22.03
kg nT3, T,= 288 K. Mean residence time of the liquid in the reactor was 750 s. Dir
sionless longitudinal coordinat and dimensionless liquid velocity were introduced
(cf. Egs @4) in ref?)

xd=x/L ,

V= b(L + 29)(7‘; . (14)

Earlier introducetiquantitiesb andQ are model parameters also in the non-isothert

case. Paramet& quantifies intensity of liquid circulation within the reactor. Recipl

cal value of parametdr can be interpreted as a measure of randomness of liquid n

cule velocities. The only single dimensionless variable — Peclet nupeeylL/D —

parameter of the dispersion model. Recently derived refafion 0.368Pe at constant

value of parametds = 8.99 was used for comparison of both the models.
Conversion of the reacting component is defined by the relation

Yo =1- pA(XEL) (15

Pao

and dimensionless temperature of the reaction mixture by the relation

T(XEL)

O

o() = -1. (16)
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The set of differential equation8)(and {) together with corresponding bounda
conditions was solved numerically: Adams—Bashforth méthas used with spatia
integration step size 0.001The Newton method was applied to the iterative eve
ation of the outlet conversion and temperature. Integrals in &qgand 0) were, in
general case, evaluated numerically using 2 000 equidistant values of velotitg
probability density functiont,(v), approaches Dirac'&-function forb = 8.99 (i.e., the
value used for comparison of the proposed model to the dispersion model). Thel
just a single value of the dimensionless velocity — the mean value — was used 1
evaluation of conversion and dimensionless temperature. It can be proved easily
Eq. (16) in ref?) that in this case the following relation holds for the mean value of
dimensionless velocity

W:Iim%:2§2+l . an
bo o

Results of computations are depicted in Figs 1-4. Figuae84dl and & show spa-
tial profiles of reacting component A conversion, Fidgs 2b, and 3 show profiles of
dimensionless temperature. Figures 2 and 3 are plotted with high resolution to er
differences between the models. Figure 2 shows also the conversion and temp
data obtained with the continuous stirred tank reactor (CSTR) model. Figure 3 :
also conversion and temperature profiles in the plug-flow reactor (PFR) model.
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spatial derivatives of the conversion and dimensionless temperature are plotted in Fi
functions of the reactor longitudinal coordinate and both models discussed in this
are compared with the PFR model.

Figure 5 also shows results for the case close to macromixing regime. Full c
indicate the outlet conversion and dimensionless reaction temperature for the r
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Conversion &) and dimensionless temperatuitg profiles in reactor. Flow regime close to ide:
mixing with microflow Pe = 0.01): Dispersion model with Danckwerts’ boundary conditiol
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mixing regime obtained by a common procedure, i.e., by evaluating the time cou
conversion and temperature in a batch reactor with subsequent averaging accor
the exponential residence time distribution function

5oolp _ 1P
pA—TgpA(t) exp(-t) . IY=1- "] (18)

Analogous equation holds for dimensionless reaction temperature.

Simulations with the adiabatic reactor model confirmed the earlier made conclu
for an isothermal reactérFirst of all, it is the conclusion that the differences betwe
the compared models are negligible from the point of view of the usual engine
accuracy requirements. It is well documented in Fig. 5 if wdfere the outlet conver-
sion value is plotted against the Peclet number. This conclusion is valid not only fi
outlet conversion values, but also for the global conversion and temperature pi
within the reactor as documented in Fig. 1 in this paper. For both low and large \
of the Peclet numbePgé < 0.1 orPe > 10), the differences between the models :
even smaller. Despite this fact, the conclusion (cf?retating that the proposed dy
namic model is much more correct in the sense, that it yields the conversion an
perature values which are in excellent agreement with the results of basic
(plug-flow model and ideal mixer with liquid micromixing), remains valid. This cc
clusion is confirmed in Figs 2 and 3 which are plotted with high resolution. The
rectness of the dynamic model is also documented in Fig. 4 where profiles of th
derivatives of the conversion and temperature are plotted. The profiles from th
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namic model are close to those generated by the plug-flow model; the profiles fro
dispersion model, however, decline substantially at the outlet of the reactor as th
troversary Danckwerts’ boundary condition must be fulfilled. This remarkable dec
tion of the conversion and temperature derivatives at the outlet does not infl
markedly the conversion and temperature profiles within the reactor itself.

Range of applicability of Danckwerts’ boundary condition is analogous to the a
cability of the condition of an absorbing boundary used in theory of stochastic
cesses and analyzed, e.g., by Zeldovich and My§hkis stated that the zer
concentration value usually supposed at the absorbing boundary (see, ®.ganeifot
be correct at zero drift velocity (in our case, at zero mean velocity of the liquid i
reactor): If the velocity at the boundary was zero, no particles can be absorbed
The authors concluded that the application of this boundary yields correct results
whole system except of a close vicinity of the absorbing boundary. This fact mu
kept in mind. Figure 4 documents that the stochastic model proposed here elinr
this problem.

We have already concludetthat the dynamic stochastic model enables, unlike
dispersion model, the description of flow pattern in the regime of fluid macroflow.
case is documented in Fig. 5 for parameter vafdies 0 andb = 1.01. The values of
the outlet conversion and dimensionless temperature for the dynamic model alm
not differ from the values obtained by conventional procedure according td q.
(full circles in Fig. 5).

Flow regimes between complete microflow and macromixing are qualitati
characterized by segregation indé&jintroduced by Danckwertsand Zwietering® by
the relation

Var(a
= p , 19
Var(a)
0.03
8
0.02
001  Fg 5
Conversion and dimensionless temperatu
profiles in reactor. Flow regime close to ide:
mixing with macroflow Q = 0.0, b = 1.01):
o ConversionY, — — — dimensionless tem-
0 0.25 0.50 075 4+ 1 peratured
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i.e., as the ratio of particle age variance between giotparticle age variance for thi
whole system. The dynamic model enables the evaluation of the segregation ind
function of model parameters (see Appendix). Since the values of both par&me
and parameteb may grow to infinity, the modified parameters (taking finite valu
only) were defined

az=1
b)
2Q
20+1°

z (20

The segregation index as a function of these parameters is depicted in Fig. 6. The
of segregation index is influenced mainly by the value of paranzetbaracterizing
intensity of liquid circulation in the reactor. In agreement with expectations (cf.,
Rippint!) the value of segregation index decreases with increasing circulation inte
The randomness of liquid molecule velocities (increases with increasing value of
metera) has substantially less effect on the segregation index value; a more
nounced effect is detectable at medium circulation intensity. At boundary valus
parameterz, the parametea has negligible effects. This observation agrees well v
the known fac¥'® that the segregation index value cannot differentiate among -
regimes close to the plug-flow and the macroflow with the exponential residence
distribution. Therefore, the only single parameter (e.g., considered segregation in
not sufficient for distinguishing among flow regimes. The two-parameter model
posed in this paper enables such a differentiation as the above-mentioned distine
regimes are characterized by distinct pairs of parambtamnslQ values.
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CONCLUSIONS

Theoretical considerations and numerical simulations presented in this paper
summarized into the following conclusions:

The earlier proposed stochastic model of continuous flow mixer and chemical re
was extended to the non-isothermal case. Analysis of the model confirmed that
this case the model is capable of describing the whole range of liquid flow rec
usually considered in chemical engineering. At limiting values of parameters, the
dictions of the stochastic model practically do not differ from the predictions of k
models used in chemical engineering, i.e., the model of plug-flow and the model
ideal continuous flow mixer both fluid micro- and macromixing.

It was shown that results of the dynamic model of an adiabatic reactor do not 1
differ from results of the dispersion model with Danckwerts’ boundary conditions.
applicability of Danckwerts’ condition at reactor outlet was discussed and the proj
stochastic model was proved to be more correct with respect to the boundary cor
formulation. The proposed model also enables the evaluation of the segregation
of liquid within reactor.

APPENDIX

Relation of Segregation Index to Parameters of Stochastic Model

Segregation inded is defined by Eq.X19) as the ratio of particle age variance betwe
points*%and in the whole flow system. Denominator of this fraction

Var(a) = 02 @3 (AD
can easily be evaluated as the difference of the second moment of particle age
bility density functionl(a) for whole system and square of the first moment

@' [ ol (o) da (A2)
0

Zwietering® derived the simple relation between functig¢a) and probability density
functionf,(t) of residence time in the system

I(a) :D%Dj' f(t) ot , (A3)
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wheredis the mean residence time of particles in system.

We shall demonstrate that for the one-dimensional model with random distributi
particle velocities proposed in this paper, both the numerator and the denoming
the fraction in Eqg. X9) can be evaluated after a minor alteration of the quaatjty
definition compared with original Danckwerts’ definitforwe shall considea to be
particle age at given positionand at given velocity.

First, we shall write a relation for the probability density function of residence 1
f(t) for the presented model (cf. E3) and (L4) in refl):

L oo

f(t) = —% { { f,(V)f(xv;t) dv dx , (A4

where the integrated function is a product of solutions of differential equa8pasd
(10) in ref! with boundary conditions given by Edl7) in the same reference. Afte
inserting into Eq.A3) we obtain the relation

L oo
1 O
I(a) =  (V)F(xv; o) av ok (A5)
I E

assuming that for increasing values of agdunctionf.() converges to zero. For thi
sake of brevity we shall denote

fo(r.00 = TLMILXMA) - (#6)

Further we shall formally denote, with symhoE (x,v), a vector of the one-dimen
sional position and velocity in configuration space of these quantities. Simplificati
notation of double integral is further introduced as

Lo
”dvdxsjdr . (A7)
00 (D)

Functionf,(r,a) is a simultaneous probability density for particle agearticle posi-
tion x, and particle velocity. Integration of this function with respect to particle age
yields the marginal probability density function for particle velocity and position wt
characterizes flow in the system

00

W(r) = [f,(r.a) da . (A8)
0
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Further we define the conditional probability density function for age of particle b
at positionx and moving with velocity, i.e., particle being at poimtof the configura-
tion space

f(r,a)
a0l =y - (A9

Functionf, (a|r) enables to find the relation for particle age at locatiand velocityv

a,(r) = j af,(alr) da (A10)
0
and further alii-th moments of the age over the whole configuration space

(o= j al(nw(r) dr . (A1)
)

From comparison of EqAQ) with Eq. A10), considering also EqA), it is obvious
that the above-defined first moments of particle age at points and in the whole s
are identical unlike the second moments. We shall use A)safd A11) for evalua-
ting the segregation index. Similarly as in the preceding paper shall use the La-
place transformation of pertinent functiof(}, and their Laplace transforms will b
denoted by symbolg(), i.e., g(s) = ﬁ[f(cx)], wheref is the Laplace transformatiot
operator. The moments of pertaining functions can then be easily evaluated usi
well-known relation (see, e.g., Appendix in téf.

= (1) C = (g0 | (12

Required moments are given by the equations

6= o, = —f o§(r,0) dr (A13
)
[0 j g@(r,0) dr , (A14)
)

03 [ 16901 wdr = [ oo 0O dr . (A9
Gy, (B)
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Laplace transform of EqQAQQ) and of its first derivativeA13 was used in EqALY).
Laplace transform of EqAE) can then be written as

019 = - LWavS) | (16

where functiorf,(v) is defined by Eq.1) in this paper and functiogy() by relation A2)
in refl

2 cosh(sx\)Q

10
g.(x,v,8) = ;gxp(—sx/\b + 1-0

d. (A17)
O

whereQ = V/[(v + w) exp (—-3L/v)]. Mean residence time according to the propo:s
model is (see EqS80, (29) and (5) in refl)

[ﬂD:L%+2\NB. (A18)
N

After performing the operations in integrals of E4d3—(A15 and subsequent inte
gration within limits [OL], the relations for required moments result:

@ 0= [I%DI fv(v)(L/v)Z(% +1R - 1) dv (A19
0
B2CE é[%' £ (V) (LV)? % + 2h(h2 - 1)§dv (A20)
17 01 0
[02E = [[£,(v)(LA)PES + h(h? - )av A21
0= G LU - (n21)

whereh = 2viw + 1.

Integrations with respect to velocityin foregoing equations are somewhat diffict
as Euler gamma-functions (both complete and incomplete ones, see, 3. Afér
pertinent rearrangements and with use of the dimensionless pardnzetd€3 (cf. Eq. (4)),
the segregation index can be evaluated. Parametnsl Q were transformed accord
ing to Eq. 20). Required moments in dimensionless form are

G 1
o 5(2220 +4z,1 + 2553) (A22
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@20 1

12 = 36%0t 185 + 13,8, + p202) (A23
0 1

[ITé =3lZd2 1) + 1021 + 528 + Z0z43)] (A29)

where

= cY2 exp(c)l (1 - 1/a;c)

_ z

C_a(l—z)

z,=2(1-2)

a=a+ti (A25

andrl (x;y) denotes the incomplete gamma-function. By inserting BA2+{(A25) into
Eqg. A1) and then into Eqg.1Q), the required segregation index value is obtained.
values of segregation index for limiting values of parametensdz can be found after
applying I'Hospital’s rule

liml=Iliml=Iliml=z liml=cexp(c)Ei(c) , (A26)

z-0 z-1 a-0 a-1

whereEi(x) is the integral exponential functithand after inserting into Eq19), the
limit values of segregation index are obtained

imJ=1; limJ=0 . (A27)
z-0 z-1
SYMBOLS

a modified model parameter defined by EBO)(

b dimensionless model parameter

Co specific heat capacity, J #gK*

D dispersion coefficient, s

E activation energy, J mdi

e parameter in Eq.1j, m s?

fy probability density function for particle velocity, s
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'Ul—gx—z—t_.EgQ

parameter defined by Eqd)(
reaction enthalpy, J kg
segregation index

heat transfer coefficient, W 1K1
frequency factor, 3

length of reactor, m

reactor perimeter, m

Pe =\W/D Peclet number

3

P2 aAaN<KXXg<< 440D

0T8O

probability of particle escape

universal gas constant, J mak—
cross-sectional area of reacto” m
temperature, K

temperature of environment, K

time, s

particle (molecule) velocity, n$
dimensionless velocity defined by Eq4)
constant characterizing geometry of system;m s
longitudinal coordinate, m

dimensionless coordinate defined by Eg)(
conversion of component A defined by E#j5)(
modified model parameter defined by EB0)(
particle age in system, s

particle age at point, s

dimensionless temperature defined by Bd®) (
concentration of reacting component, kg®m
density, kg m®

reaction rate, kg nis?

gamma-function

liquid circulation intensity (model parameter)

Other symbols

Uk
Uo
u

ga b~ wWNBE

~N O

related to outlet value of quantity
related to inlet value of quantity
mean value of quantity
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